
About that machine epsilon ...

James F. Epperson

July 13, 2021

On August 29, 2014, I had a very pleasant email exchange with Prof. Kathleen
Shannon of Salisbury State University, who had some questions about the Matlab
solution code I gave in the Solutions Manual for Exercise 10 in §1.3. This webpage is
based on that discussion.

The solution code is kind of obvious: Take some initial value—which I’ll call the
seed and denote it by x0—and then decrement it recursively with a factor I’ll call θ
(θ < 1), according to xn+1 = θxn until we have 1 = 1 + xN . Call this value xN

our (approximate) machine epsilon, xN = u∗ ≈ u. Now it should be obvious that
u∗ depends on both x0 and θ, but it also will be affected by the rounding of the finite
precision arithmetic, and since we are trying to approximate a very small quantity, that
rounding could be a big issue.

I wrote my code thinking as a numerical analyst, meaning I took a small seed and a
large decrement—so the code would not run long and would not overshoot the true value
ofu by very much—but neither could be represented exactly in floating point arithmetic.
My code returns u∗ = 1.101642356786233× 10−16. Prof. Shannon wrote a code that
didn’t care about efficiency but worried more about exact arithmetic: her seed was 1
and her decrement was θ = 1/2 (not 0.5). She got u∗ = 1.110223024625157×10−16.
Since her value is larger than mine, it has to be a better approximation to u.

An interesting exercise would be to compute different values of u∗ for different
values of x0 and θ and plot the results. I may do that, or something very similar, in the
near future.

I suspect that any future edition of the text will include a version of this discussion,
along with a footnote crediting Prof. Shannon.

Alas, this was not done, so an appropriate errata will be added to this website and
also to future printings of the text.

1


