About that machine epsilon ...

James F. Epperson

July 13, 2021

On August 29, 2014, I had a very pleasant email exchange with Prof. Kathleen Shannon of Salisbury State University, who had some questions about the Matlab solution code I gave in the Solutions Manual for Exercise 10 in $\S 1.3$. This webpage is based on that discussion.

The solution code is kind of obvious: Take some initial value-which I'll call the seed and denote it by x_{0}-and then decrement it recursively with a factor I'll call θ $(\theta<1)$, according to $x_{n+1}=\theta x_{n}$ until we have $1=1+x_{N}$. Call this value x_{N} our (approximate) machine epsilon, $x_{N}=\mathbf{u}_{*} \approx \mathbf{u}$. Now it should be obvious that \mathbf{u}_{*} depends on both x_{0} and θ, but it also will be affected by the rounding of the finite precision arithmetic, and since we are trying to approximate a very small quantity, that rounding could be a big issue.

I wrote my code thinking as a numerical analyst, meaning I took a small seed and a large decrement-so the code would not run long and would not overshoot the true value of \mathbf{u} by very much-but neither could be represented exactly in floating point arithmetic. My code returns $\mathbf{u}_{*}=1.101642356786233 \times 10^{-16}$. Prof. Shannon wrote a code that didn't care about efficiency but worried more about exact arithmetic: her seed was 1 and her decrement was $\theta=1 / 2($ not 0.5$)$. She got $\mathbf{u}_{*}=1.110223024625157 \times 10^{-16}$. Since her value is larger than mine, it has to be a better approximation to \mathbf{u}.

An interesting exercise would be to compute different values of \mathbf{u}_{*} for different values of x_{0} and θ and plot the results. I may do that, or something very similar, in the near future.

I suspect that any future edition of the text will include a version of this discussion, along with a footnote crediting Prof. Shannon.

Alas, this was not done, so an appropriate errata will be added to this website and also to future printings of the text.

