
Basins of Attraction [Updated: June, 2015]

James F. Epperson

July 8, 2015

[Note: This section requires some familiarity with complexarithmetic.]
We’ve done enough with root-finding methods to understand that the root we con-

verge to will depend—perhaps very much so—on the choice of initial guess. We can
formalize this idea by defining the notion of abasin of attraction. Roughly speaking,
the basins of attraction for a function, for a given method, are the sets of initial values
from which the iteration will converge to each root.

An example will illustrate this, then we will formalize it with a definition. Consider
the function

f(x) = x2 + sin(πx)

and assume we are using Newton’s Method. Using the plotting functions in MATLAB
confirms thatx = ζ1 = 0 andx = ζ2 ≈ −0.75 are the two (real) roots of this function.
So, the set of all initial valuesx0 such that Newton’s method applied tof converges
to the rootx = ζ1 is the basin of attraction forx = ζ1. Similarly, the set of all initial
valuesx0 such that Newton’s method applied tof converges to the rootx = ζ2 is the
basin of attraction forx = ζ2. This example is set up for real values, only, but we will
want to formalize it for complex variables. Fig. 1 shows a plot of this function.

The formal definition is:

Definition 1 (Basins of Attraction) Given a functionf defined on the complex plane,
C, with rootsζ1, ζ2, . . . , ζk ∈ C, and a (convergent) root-finding iteration defined by

zn+1 = g(zn),

the Basin of Attraction for the rootζk is defined to be

Bf,g(ζk) = {ζ ∈ C| the iterationzn+1 = g(zn) with z0 = ζ converges toζk}

Clearly, if we are close enough to one of the roots, then we should be in the basin of
attraction for that root. But we have had enough experience with Newton’s method to
know that the iteration can jump around a bit before settlingin to converge. In Fig. 2 we
illustrate this for the two real roots of our example function. For each of3, 000 points
ζ ∈ [−2, 1] we have drawn a vertical line varying in color according to the following
scheme:

1



−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 1: Basins example

• If the iteration withx0 = ζ converges to the rootζ1 = 0 then the line is light
blue (cyan).

• If the iteration withx0 = ζ converges to the rootζ2 = −0.78723712453434 then
the line is green.

• If the iteration withx0 = ζ fails to converge to eitherζ1 or ζ2, then the line is
red.

−2 −1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2: Basins example

Obviously, in the immediate vicinity of each root we have a broad swath of the
appropriate color. But in the “transiton regions” we get each color switching back and
forth. This is in factfractal in nature.

2



What we are going to do for the rest of this section is explore the notion of basins
of attraction, experimentally, for a very simple polynomial in the complex plane. The
results are definitely surprising.

Define the function
f(z) = z4 − 1.

This has the four rootsζ = 1,−1, i,−i. We will construct a color plot in the complex
plane akin to Fig. 2, showing the basins of attraction for Newton’s method applied to
this function.

We will consider the square region in the complex plane defined by

R = {z ∈ C | z = x+ iy, −1.25 ≤ x ≤ 1.25, −1.25 ≤ y ≤ 1.25}

We will associate the roots with colors as follows:

• ζ = 1 is red.

• ζ = i is green.

• ζ = −1 is yellow.

• ζ = −i is (dark) blue.

We expect to get wedge-shaped regions of the appropriate color centered at each
root, with a fractal region along the diagonal boundaries.

Coding this for a modern MATLAB installation is fairly easy;in fact, the following
m-file ought to do the job.

xmin = -1.25;

xmax = 1.25;

ymin = - 1.25;

ymax = 1.25;

figure(1)

axis([xmin, xmax, ymin, ymax]);

hold on

n = 100;

N = 5*n;

h = 2.5/N;

h2 = 0.5*h;

for kx = 0:N

x = kx*h + h2;

for ky = 0:N

y = ky*h + h2;

z = x + y*i

c = bnewt(z)

plot(x,y,’.’,’color’,c);

end

end

3



Note: The functionbnewt does the actual Newton iteration and returns the color
as a single character string.

Running this code can take a long time, and, in fact, my ancient MATLAB on my
almost-as-ancient laptop was unable to save the finished figure because of memory
issues. I was able to get the figures here by going to the library at the University of
Michigan. (To get the code to runandsave the image, I had to taken = 17, which ran
very fast but produced a very poor picture.) A black plus sign(+) marks the location of
each of the four roots.

This code generates a plot in a square region of the complex plane with corners
z = ±1.25 ± 1.25i. Plots over larger regions can be produced by fiddling with the
parameters. [In fact, each of these plots will probably be soon replaced by a plot over
±2± 2i—JFE 1/31/2014.]

Note the “lobes” that occur along the diagonal lines separating the main basins for
each root. All four colors are present in each lobe, but the larger sub-regions always
involve the “other” two roots, i.e., along the diagonal separatingζ = 1 from ζ = i (red
from green) the larger sub-regions are blue and yellow. Notealso that the edges of the
lobes—as well as the sub-regions within the lobes—themselvesappear to be fractal in
nature, and the sizes of the lobes seem to be decreasing as we progress up the diagonal.

What about other methods? Do we get different looking basins using things like
Halley’s method, the super-Halley method, or Chun–Neta? Well, it is fairly easy to
modify our m-file to do this: All we have to do is replace the Newton iteration inside
thebnewt m-file with an alternate root finding method. The results are given in Figs.
4–6.

For the Halley method, the lobes appear to be much smaller than for Newton’s
method, although the same fractal edges and color tendencies appear to hold. It is
unclear if the size of the lobes decreases as we go up the diagonal, since I only
computed over a region large enough to get one full large lobe.

4



Figure 3: Basins of attraction for Newton’s method applied to f(z) = z4 − 1.

For the super-Halley method, we have a mix of the Newton-style lobes and the
Halley-style lobes. It is an “eyeball-based” judgment, butI do think the overall size of
the lobes for super-Halley is smaller than for Newton (but not as small as for Halley).
It might be an interesting experiment to enlarge the region plotted to see what is the
nature of the lobes appearing in the corners.

5



Figure 4: Basins of attraction for Halley’s method applied to f(z) = z4 − 1.

The lobe structure for Chun–Neta is more extensive than for Newton, and the lobes
look larger. The region around the root where the iteration will not jump off and
converge to another root appears smallest for Chun–Neta.

So, what do we learn from these figures? It is apparent to me that the Halley
method has the “best” basin of attraction, i.e., the regionswhere you converge to the
“wrong” root are the smallest. This suggests to me that the Halley method might be
superior to the others. Despite its very high order of convergence the “lobes” in the
basin of attraction for Chun–Neta are very large compared tothe other methods. In
fact, regardless of the efficiency index or the order of convergence, looking only at the
basins of attraction for this single example, one is temptedto rank these four methods
as follows:

6



Figure 5: Basins of attraction for the super Halley method applied tof(z) = z4 − 1.

1. Halley

2. Super Halley

3. Newton

4. Chun–Neta

This very crude assessment totally ignores the theoreticalorder of convergence, how-
ever.

7



Figure 6: Basins of attraction for the Chun–Neta method applied tof(z) = z4 − 1.

8



Update: In June of 2015, I read the brief paper [1], which discusses the basins of
attraction for the polynomial

p(x) = x3 − 2x+ 2.

The exact roots areζ = −1.7692924, 0.8846462± 0.5897428i. Fig. 7 shows a plot of
this polynomial near the origin.

0−2 2−1 1−1.5 −0.5 0.5 1.5

0

−2

2

4

6

−1

1

3

5

−1.5

−0.5

0.5

1.5

2.5

3.5

4.5

5.5

Figure 7: Plot of polynomialp(x) = x3 − 2x+ 2.

We can apply Newton’s method to this polynomial and construct the corresponding
basins of attraction. Sincep is a cubic, it only has three roots, so we need only three
colors, which we set up as follows:

ζ = −1.7692924 = dark blue

ζ = 0.8846462 + 0.5897428i = yellow

ζ = 0.8846462− 0.5897428i = green

Fig. 8 shows the plot over the region−4 ≤ x ≤ 2, and−3 ≤ y ≤ 3 in the complex
plane; Fig 9 shows the plot over the smaller region−2 ≤ x ≤ 1, and−1.5 ≤ y ≤ 1.5.

These look much like the previous plots,exceptfor the several regions of black.
Where did these come from? Well, when I wrote the MATLAB codes,I initialized the
color for each point to be black, and this would be changed to blue or yellow or green
(or red, in the previous examples) only when the root was identified. So black means
that no root was found—the black regions correspond to initial points for which the
iteration fails to converge!

9



Figure 8: Basins of attraction forp(x) = x3 − 2x + 2, over −4 ≤ x ≤ 2, and
−3 ≤ y ≤ 3.

Figure 9: Basins of attraction forp(x) = x3 − 2x + 2, over −2 ≤ x ≤ 1, and
−1.5 ≤ y ≤ 1.5.

This in fact was the point of [1] which discusses the work in several other papers
([2], [3]), both of which study iterations like that for ourp very theoretically. What
happens if you start the iteration in one of the “black” regions? Well, let’s give it a try.

Looking carefully at Fig. 9, it is apparent thatz = 0 is inside the black region along
the real axis. (This can be confirmed by plotting a special character in a different color

10



at that point.) Taking this as ourz0, we get the iterates:

z0 = 0, z1 = 1, z2 = 0, z3 = 1 . . .

Clearly these are not converging. If we start slightly away from the origin, then
the iterates converge to the alternating pair (called alimit cycle) (0, 1). By doing
some experimenting, I was able to determine that usingz0 = 0.14 converges toζ1 =
−1.7692924 in about 85 iterations, butz0 = 0.139 converges to the limit cycle in about
52 iterations. Using complexz0 gives similar results: usingz0 = 0.1 + 0.1i converges
to ζ3 = 0.8846462 − 0.5897428i in 12 iterations, butz0 = 0.1 + 0.05i converges to
the limit cycle in 15–25 iterations.

Looking at Fig. 9, it is apparent that there are (very small) black regions continuing
along thex-axis. If we “zoom in” we can see that these do indeed exist, and one of them
is roughly centered atx = 1 (no surprise), while another is atx = 1.5. What happens
if we takez0 = 1.5 in our iteration? Well, this is an easy computation, and we almost
immediately settle in to the(0, 1) limit cycle. Takingz0 = 1.6 results in converging
to the limit cycle in about 66 iterations; takingz0 = 1.7 leads to convergence to
ζ1 = −1.7692924 in 20 iterations. Taking the complex initial valuez0 = 1.55 + 0.01i
converges toζ = 0.8846462+0.5897428i in 13 iterations, but usingz0 = 1.52+0.005i
converges to the limit cycle. As we progress further out the real axis these “regions of
non-convergence” will continue to exist, although they do get smaller and smaller.

References

[1] Abate, Marco, “À la Recherche des Racines Perdues (In Search of Lost Roots),”
in Imagine Math 3, Between Culture and Mathematics, Michele Emmer (ed.),
Springer (Milan) 2014.

[2] Aspenberg, M., Bilarev, T., and Schleicher, D., “On the speed of convergence of
Newton’s Method for complex polynomials, Preprint, arXiv:1202.2475.

[3] Hubbard, J.H., Schleicher, D., and Sutherland, S., “Howto find all roots of
complex polynomials by Newton’s method,Invent. Math., vol. 146, pp. 1–33
(2001).

11


