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[Note: This section requires some familiarity with compéaithmetic.]

We've done enough with root-finding methods to understaatttie root we con-
verge to will depend—perhaps very much so—on the choice ddimjtiess. We can
formalize this idea by defining the notion obasin of attraction Roughly speaking,
the basins of attraction for a function, for a given methaod,the sets of initial values
from which the iteration will converge to each root.

An example will illustrate this, then we will formalize it ¢ a definition. Consider
the function

f(z) = 22 + sin(rx)

and assume we are using Newton’s Method. Using the plottingtions in MATLAB
confirms thatt = (; = 0 andx = (3 = —0.75 are the two (real) roots of this function.
So, the set of all initial values, such that Newton’s method applied foconverges
to the rootz = (; is the basin of attraction far = ¢;. Similarly, the set of all initial
valuesz, such that Newton’s method applied faconverges to the roat = ¢, is the
basin of attraction for: = (5. This example is set up for real values, only, but we will
want to formalize it for complex variables. Fig. 1 shows at jpitthis function.

The formal definition is:

Definition 1 (Basins of Attraction) Given a functionf defined on the complex plane,
C, with roots¢y, (s, . . ., (& € C, and a (convergent) root-finding iteration defined by

Zn4+1 = g(Zn),
the Basin of Attraction for the rody, is defined to be
By.¢(Ck) = {¢ € C| the iterationz,, 11 = g(z,) with zy = ( converges tq}

Clearly, if we are close enough to one of the roots, then waldhme in the basin of
attraction for that root. But we have had enough experienteMewton’s method to
know that the iteration can jump around a bit before setitirtg converge. In Fig. 2 we
illustrate this for the two real roots of our example funotid-or each o8, 000 points
¢ € [-2,1] we have drawn a vertical line varying in color according te fbllowing
scheme:
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Figure 1: Basins example

e If the iteration withzy = ¢ converges to the roa = 0 then the line is light
blue (cyan).

o Ifthe iteration withzy = ¢ converges to the rogt = —0.78723712453434 then
the line is green.

o If the iteration withzy = ( fails to converge to eithef; or (s, then the line is
red.
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Figure 2: Basins example

Obviously, in the immediate vicinity of each root we have adut swath of the
appropriate color. But in the “transiton regions” we getteaolor switching back and
forth. This is in factfractal in nature.



What we are going to do for the rest of this section is exploeertbtion of basins
of attraction, experimentally, for a very simple polynofirathe complex plane. The
results are definitely surprising.

Define the function

f(z)=2*—1.
This has the four rooté = 1, —1, ¢, —i. We will construct a color plot in the complex
plane akin to Fig. 2, showing the basins of attraction for M&s method applied to
this function.
We will consider the square region in the complex plane ddfine

R={zeClz=ao+1iy, —1.25 <z <1.25, —1.25 <y <1.25}
We will associate the roots with colors as follows:
e ( =1lisred.
e ( =idlisgreen.
e ( = —1lisyellow.
e ( = —iis (dark) blue.

We expect to get wedge-shaped regions of the appropriabe cehtered at each
root, with a fractal region along the diagonal boundaries.

Coding this for a modern MATLAB installation is fairly easy;fact, the following
m-file ought to do the job.

xmin = -1.25;
xmax = 1.25;
ymin = - 1.25;
ymax = 1.25;
figure(1)
axis([xmin, xmax, ymin, ymax]);
hold on
n = 100;
N = bx*n;
h = 2.5/N;
h2 = 0.5%h;
for kx = 0:N
x = kx*h + h2;
for ky = 0:N
y = ky*h + h2;
Z =x + y*i
¢ = bnewt(z)
plot(x,y,’.’,’color’,c);
end
end




Note: The functionbnewt does the actual Newton iteration and returns the color
as a single character string.

Running this code can take a long time, and, in fact, my an®&&XTLAB on my
almost-as-ancient laptop was unable to save the finishecefigecause of memory
issues. | was able to get the figures here by going to the Jitatathe University of
Michigan. (To get the code to ritandsave the image, | had to take= 17, which ran
very fast but produced a very poor picture.) A black plus gigmarks the location of
each of the four roots.

This code generates a plot in a square region of the compémepkith corners
z = +1.25 + 1.25:. Plots over larger regions can be produced by fiddling with th
parameters. [In fact, each of these plots will probably enseplaced by a plot over
+2 + 2i—JFE 1/31/2014.]

Note the “lobes” that occur along the diagonal lines sepagdhe main basins for
each root. All four colors are present in each lobe, but thgelasub-regions always
involve the “other” two roots, i.e., along the diagonal sepag( = 1 from ¢ = i (red
from green) the larger sub-regions are blue and yellow. diste that the edges of the
lobes—as well as the sub-regions within the lobes—themsalvpsar to be fractal in
nature, and the sizes of the lobes seem to be decreasing asgregs up the diagonal.

What about other methods? Do we get different looking bassirsguthings like
Halley’s method, the super-Halley method, or Chun—Netal,\iVes fairly easy to
modify our m-file to do this: All we have to do is replace the Newiteration inside
thebnewt m-file with an alternate root finding method. The results avergin Figs.
4-6.

For the Halley method, the lobes appear to be much smaller fdraNewton’s
method, although the same fractal edges and color tendeapjgear to hold. It is
unclear if the size of the lobes decreases as we go up therdihggince | only
computed over a region large enough to get one full large lobe



Figure 3: Basins of attraction for Newton’s method applied tz) = z* — 1.

For the super-Halley method, we have a mix of the Newtoreshybes and the
Halley-style lobes. It is an “eyeball-based” judgment, bdib think the overall size of
the lobes for super-Halley is smaller than for Newton (butamsmall as for Halley).
It might be an interesting experiment to enlarge the regioitgr to see what is the
nature of the lobes appearing in the corners.



Figure 4: Basins of attraction for Halley's method appliegtz) = 2* — 1.

The lobe structure for Chun—Neta is more extensive than &wthin, and the lobes
look larger. The region around the root where the iteratidgih mot jump off and
converge to another root appears smallest for Chun—Neta.

So, what do we learn from these figures? It is apparent to ntethleaHalley
method has the “best” basin of attraction, i.e., the regishere you converge to the
“wrong” root are the smallest. This suggests to me that thikeilanethod might be
superior to the others. Despite its very high order of cageerce the “lobes” in the
basin of attraction for Chun—Neta are very large compareti¢cother methods. In
fact, regardless of the efficiency index or the order of caywece, looking only at the
basins of attraction for this single example, one is tempednk these four methods
as follows:



Figure 5: Basins of attraction for the super Halley methauliag to f(2) = 2* — 1.

1. Halley
2. Super Halley
3. Newton

4. Chun—Neta

This very crude assessment totally ignores the theoretdicilr of convergence, how-
ever.



Figure 6: Basins of attraction for the Chun—Neta methodiagpb f(z) = 2* — 1.



Update: In June of 2015, | read the brief paper [1], which discussedtsins of
attraction for the polynomial

p(x) = 2> — 2z + 2.

The exact roots ar@¢ = —1.7692924, 0.8846462 £ 0.5897428:. Fig. 7 shows a plot of
this polynomial near the origin.

Figure 7: Plot of polynomiab(z) = 22 — 2z + 2.

We can apply Newton’s method to this polynomial and consthecorresponding
basins of attraction. Singeis a cubic, it only has three roots, so we need only three
colors, which we set up as follows:

¢ = —1.7692924 = dark blue
¢ = 0.8846462 + 0.5897428: = yellow
¢ = 0.8846462 — 0.5897428i = green

Fig. 8 shows the plot over the regient < x < 2, and—3 < y < 3 in the complex
plane; Fig 9 shows the plot over the smaller regidh< z < 1, and—1.5 <y < 1.5.

These look much like the previous ploexceptfor the several regions of black.
Where did these come from? Well, when | wrote the MATLAB codésitialized the
color for each point to be black, and this would be changedue br yellow or green
(or red, in the previous examples) only when the root wastified. So black means
that no root was found—the black regions correspond to Imtiénts for which the
iteration fails to converge!



Figure 8: Basins of attraction fgs(z) = 23 — 2z + 2, over —4 < z < 2, and
-3<y<3.

Figure 9: Basins of attraction fgs(z) = 2% — 2 + 2, over—2 < x < 1, and
~1.5<y<15.

This in fact was the point of [1] which discusses the work inesal other papers
(2], [3]), both of which study iterations like that for oprvery theoretically. What
happens if you start the iteration in one of the “black” reg® Well, let’s give it a try.

Looking carefully at Fig. 9, itis apparent that= 0 is inside the black region along
the real axis. (This can be confirmed by plotting a speciataittar in a different color
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at that point.) Taking this as oug, we get the iterates:
20=0, z1=1, 2=0, 2z3=1...

Clearly these are not converging. If we start slightly aweynf the origin, then
the iterates converge to the alternating pair (callddrét cycle) (0,1). By doing
some experimenting, | was able to determine that using 0.14 converges t@; =
—1.7692924 in about 85 iterations, but) = 0.139 converges to the limit cycle in about
52 iterations. Using complex, gives similar results: using, = 0.1 + 0.17 converges
to (5 = 0.8846462 — 0.5897428i in 12 iterations, but, = 0.1 4+ 0.05¢ converges to
the limit cycle in 15-25 iterations.

Looking at Fig. 9, itis apparent that there are (very smaditk regions continuing
along thez-axis. If we “zoom in” we can see that these do indeed exist care of them
is roughly centered at = 1 (no surprise), while another is at= 1.5. What happens
if we takezy, = 1.5 in our iteration? Well, this is an easy computation, and vieosi
immediately settle in to thé0, 1) limit cycle. Takingzo = 1.6 results in converging
to the limit cycle in about 66 iterations; taking = 1.7 leads to convergence to
¢1 = —1.7692924 in 20 iterations. Taking the complex initial valug = 1.55 + 0.017
converges tq = 0.8846462+-0.5897428; in 13 iterations, but using; = 1.524-0.005¢
converges to the limit cycle. As we progress further out #a axis these “regions of
non-convergence” will continue to exist, although they @bgmaller and smaller.
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