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Introduction, Algorithms, and Examples

In Chapter 4 we constructed some least squares approximations to functions, using
orthogonal polynomials as our basis functions, and found that the accuracy of the
approximations was quite good. In these pages we will look atwhat is generally known
as “spectral interpolation,” by which we mean interpolation using special nodes and
polynomials. Our goal is to see if we can obtain a significant improvement in the
accuracy of our approximation without a significant increase in computational cost.

We will use the Chebyshev polynomialsTk(x), introduced in§4.11, as our basic
building blocks, so we will restrict ourselves to the interval [−1, 1]. We will use two
sets of nodes:

1. The Lobatto nodes:

xk = − cos

(

kπ

N

)

, k = 0, 1, . . . , N (1)

These are new, and were first introduced by the Dutch mathematician Rehuel Lobatto
(1797–1866) in the early 1850s as part of a quadrature scheme.1

2. The Chebyshev nodes:

xk = − cos

[

(2k + 1)π

2N + 2

]

, k = 0, 1, . . . , N (2)

These were introduced in§4.12.3.
The minus signs are used to force the indexing to be from left to right on the interval

[−1, 1].

Remember that the interpolating polynomial is unique, so what we produce here is
the same as we would get from the Lagrange (§4.1) or Newton (§4.2) forms in Chapter

1Rehuel Lobatto (6/6/1797–2/9/1866) was a Dutch mathematician, born in Amsterdam to a Portuguese
family of Jewish extraction. Athough he never completed an ordinary doctorate, he published over 60 articles
in various journals between 1823 and his death in 1866. In 1842, after receiving an honorary doctorate from
the University of Gronigen in 1834, he became professor of mathematics at the newly founded Royal Academy
in Delft. His work on quadrature was published as "Lessen over de differentiaal-en integraalrekening" in the
early 1850s.
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4. The advantage of the spectral approach is in the choices ofnodes. (The choice of
the Chebyshev polynomials can lead to some computational savings, but those issues
will not be addressed.)

Much of what we do here is based on material in [1] and [2].
The algorithms for computing the interpolants can be summarized as follows.

1. Lobatto nodes: The polynomial is defined by

PN (x) =
N
∑

n=0

′′bnTn(x) (3)

where the coefficients are defined by

bn =
2

N

N
∑

k=0

′′f(xk)Tn(xk) (4)

The double-prime notation means that the first and last entries of the sum are multiplied
by 1

2 .

2. Chebyshev nodes: The polynomial is defined by

QN (x) =

N
∑

n=0

′cnTn(x) (5)

where the coefficients are defined by

cn =
2

N + 1

N
∑

k=0

′′f(xk)Tn(xk) (6)

The prime notation means that the first entry of the sum is multiplied by 1
2 . We will

derive these formulas later in this document, based on material in [2].
Let’s begin by looking at some examples.
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Example: Considerf(x) = ex over the interval[−1, 1]. Using the computations
outlined above, we can easily construct spectral interpolates using either grid. The
errors, as estimated by sampling at 2000 equally-spaced points, are given in Table 1
for N = 4, 8, 12, 16; Figure 1 shows the interpolate and function and the error plots
for both sets of nodes, forN = 8 (in all these figures, the results for the Lobatto nodes
are on the left, and for the Chebyshev nodes they are on the right). Note that, in all the
examples, the errors at the nodes (marked with a red ’o’) are exactly zero.

Table 1: Errors in spectral interpolation tof(x) = ex.
N Error (Lobatto nodes) Error (Chebyshev nodes)
4 1.0659518054e-03 6.3969948255e-04
8 2.2029401858e-08 1.2190087162e-08
12 8.0380146983e-14 4.7073456244e-14
16 5.5511151231e-15 2.0428103653e-14
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Figure 1: Plots of spectral interpolation tof(x) = ex.
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Example: Consider nowf(x) = 1
1+25x2 , which we referred to as “the Runge ex-

ample” in Chapter 4. Our usual interpolation had a bit of difficulty with this function.
How do the spectral methods fare? Table 2 gives the same errorinformation as for our
first example. The errors are not as small as above, but the accuracy is much better than
with Newton interpolation. The figure this timne is forN = 16.

Table 2: Errors in spectral interpolation tof(x) = 1
1+25x2 .

N Error (Lobatto nodes) Error (Chebyshev nodes)
4 4.5998051841e-01 4.0201674194e-01
8 2.0468170483e-01 1.7083373973e-01
12 8.4395954222e-02 6.9215707808e-02
16 3.6712899069e-02 3.2613370682e-02
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Figure 2: Plots of spectral interpolation tof(x) = 1
1+25x2 , for N = 16.
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Example: Consider nowf(x) = e10x

1+e10x , which is often referred to as a “sigmoid”
function, because it is roughly S-shaped. Table 3 gives the results of our interpolations,
and Fig. 3 shows the function, interpolate, and the error forN = 8.

Table 3: Errors in spectral interpolation tof(x) = e10x

1+e10x .

N Error (Lobatto nodes) Error (Chebyshev nodes)
4 2.0418793004e-01 1.7700643107e-01
8 7.7954779351e-02 6.3182166100e-02
12 2.5604089310e-02 2.0190187202e-02
16 7.8768570291e-03 6.1405010074e-03
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Figure 3: Plots of spectral interpolation tof(x) = e10x

1+e10x , for N = 8.
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Example: Consider now the functionf(x) = 1− βex − βe−x, for β = e
e2+1 . This

is the exact solution for the first example in§11.1 of the text. We get the errors in Table
4. Fig. 4 shows the solution and errors forN = 8.

Table 4: Errors in spectral interpolation tof(x) = 1− βex − βe−x, for β = e
e2+1 .

N Error (Lobatto nodes) Error (Chebyshev nodes)
4 4.5105466649e-05 5.8554408689e-05
8 6.6349846450e-10 7.1497261044e-10
12 2.1926904736e-15 2.1649348980e-15
16 7.7715611724e-16 1.3877787808e-15
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Figure 4: Plots of spectral interpolation tof(x) = 1− βex − βe−x, for N = 8.
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Exponential convergence

In spectral methods one often reads of “exponential convergence.” What does this
mean? We can illustrate the idea with some more data from our examples.
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Figure 5:logEN vs. N for f(x) =
ex, andN = 4, 8, 12, 16.
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Figure 6:logEN vs. N for f(x) =
1

1+25x2 , andN = 4, 8, 12, 16.
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Figure 7:logEN vs. N for f(x) =
e10x

1+e10x , andN = 4, 8, 12, 16.

104 6 8 12 14 165 7 9 11 13 15

−20

−30

−10

−34

−32

−28

−26

−24

−22

−18

−16

−14

−12

−8

−6

Figure 8: logEN vs. N for
f(x) = 1− βex − βe−x, andN =
4, 8, 12, 16.

If we plot the logarithm of the error versusN for, say, the Runge functionf(x) =
1

1+25x2 , we get the plot in Fig. 6. Note that both lines are nearly straight lines, implying
that

log |EN | ≈ aN + b

for some constantsa andb, with a < 0 (since the slope is obviously negative). We
therefore have

|EN | ≈ BeaN ,

for B = eb. In other words, the error decays (recalla < 0) exponentiallywith N .
(We have not proved this, only demonstrated it by example; but it is rigorously true.)
Is this an artifact of the particular example? No, it is not, as the graphs plus the
material in the previous section indicate. All four examplefunctions show the expected
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rapid exponential convergence. (The apparent “flattening”of the error for the first
and last examples can be explained, below.) This is why spectral methods for various
differential equation problems deliver such high accuracyfor such a small investment
in computational cost.

Where does this high accuracy come from? Recall§4.12.3, where the text presented
the Chebyshev nodes (2), and Theorem 4.11 in particular, in which we proved that the
error in interpolation using the Chebyshev nodes was bounded according to

‖f −QN‖∞ ≤ 1

2N (N + 1)!
‖f (N+1)‖∞; (7)

here,f is the function being interpolated, andQN is the interpolate usingN +1 nodes.
The exponential convergence comes from the2N factor together with the factorial in
the denominator. A similar result holds for the Lobatto nodes, as we shall now prove.

Theorem 1 Letf ∈ CN+1([a, b]) and let the nodesxk ∈ [−1, 1] be the Lobatto nodes
(1). Then, for eachx ∈ [−1, 1],

‖f − PN‖∞ ≤ N2

2N−1(N + 1)!
‖f (N+1)‖∞, (8)

wherePN is the interpolate defined by the valuesf(xk), 0 ≤ k ≤ N .

Proof: The Polynomial Interpolation Error Theorem (Theorem 4.3) says that there
is a valueξx ∈ [−1, 1] such that

f(x)− PN (x) =
wN (x)

(N + 1)!
f (N+1)(ξx),

where

wN (x) =
N
∏

k=0

(x− xk).

Clearly the key is going to be boundingwN .
Let’s assume thatN is even, soN + 1 is odd2. The “interior” nodes are the points

whereTN (x) = ±1, i.e., the points where the “ monic polynomial”̂TN hits its extrema,
thusT̂ ′

N (x) = 0. Thus
wN (x) = (x2 − 1)T̂ ′

N (x).

But recall Theorem 4.10, part 3:Tn(x) = 2n−1xn+ lower-order terms. Therefore
T̂ ′

N (x) = N
(

1
2N−1

)

xN−1+ lower-order terms, or,̂T ′

N (x) =
(

N
2N−1

)

T ′

N (x). So, with
a little work, we get

wN (x) =
N(x2 − 1)

2N−1
T ′

N (x).

Direct application of calculus to the definition of the Chebyshev polynomials yields

T ′

N (x) = − sin
(

N cos−1 x
)

[ −N√
1− x2

]

.

2The proof changes in an obvious way ifN is odd.
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So, finally,

|wN (x)| = N(1− x2)

2N−1

∣

∣

∣

∣

sin
(

N cos−1 x
)

[ −N√
1− x2

]∣

∣

∣

∣

≤ N2

2N−1

∣

∣1− x2
∣

∣

3/2 ≤ N2

2N−1
,

and we have (8) •
We can use Stirling’s Formula (§5.5) to rigorously establish that

‖f −QN‖∞ ≤ AN

(

e

2N + 2

)N+1

‖f (N+1)‖∞,

whereAN is bounded and decays to zero like1/
√
N . This predicts averyhigh degree

of accuracy (for sufficiently smoothf ). Similarly, we can show that

‖f − PN‖∞ ≤ BNN3/2

(

e

2N + 2

)N+1

‖f (N+1)‖∞,

whereBN is positive and bounded asN → ∞. Again, this yields very high accuracy
for smooth functionsf .

The error plots for both the exponential and the ODE solution(Figs. 5 and 8) show
what appears to be a decrease in the rate of convergence: The error appears to “flatten
out” as we go from theN = 12 to theN = 16 case, for both examples. Is something
going wrong here? Well, yes and no. The approximations here are so accurate that
we are into “the noise” in the computation—the rounding erroris comparable to the
mathematical error—and we have reached the limits of our accuracy. If we could set the
code to compute in higher precision, then we would see these error lines both straighten
out.

The error bounds suggest that the Chebyshev nodes would be superior to the Lobatto
nodes by a factor of aboutN2/2, but the evidence from our examples suggests neither
node set is consistently superior in practice. The Lobatto nodes, because they involve
the boundary points±1, are generally preferred.

Derivation of Interpolation Formulas

Note: As of 4/4/2014, this section is still very sketchy. The results are valid, but I have
yet to produce proofs that I am happy with. I will post this to the web site for the sake
of “getting it up there,” with the idea that the full proofs can follow, later.

The first thing we need to do is establish a trig identity whichis the first step in
constructing the interpolation formulas.

Lemma 1 Define

SN (θ) =

N
∑

k=0

cos

(

k +
1

2

)

θ;

then, for allθ and allN ≥ 0,

SN (θ) =
sin (N + 1)θ

2 sin 1
2θ

(9)
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Proof: Since the identity depends on an integerN , we can use induction. ForN = 0
we have

S0(θ) =

0
∑

k=0

cos

(

k +
1

2

)

θ = cos
1

2
θ =

cos 1
2θ sin

1
2θ

sin 1
2θ

=
2 cos 1

2θ sin
1
2θ

2 sin 1
2θ

=
sin θ

2 sin 1
2θ

and the “inductive hypothesis” is confirmed forN = 0.
Now we will assume (9) is true forN = n, and use this to prove that it is true for

N = n+ 1, which completes the inductive proof. We have:

Sn+1(θ) = Sn(θ) + cos

(

n+
3

2

)

θ

=
sin (n+ 1)θ

2 sin 1
2θ

+ cos

(

n+
3

2

)

θ

=
sin (n+ 1)θ

2 sin 1
2θ

+
2 cos

(

n+ 3
2

)

θ sin 1
2θ

2 sin 1
2θ

But
2 sinA cosB = sin (A−B) + sin (A+B),

so

2 cos

(

n+
3

2

)

θ sin
1

2
θ = − sin (n+ 1)θ + sin (n+ 2)θ.

Therefore,

Sn+1(θ) =
sin (n+ 2)θ

2 sin 1
2θ

,

which was to be proved. •

The formulas used for the interpolations are based on a pair of “discrete orthog-
onality” results, which we now state. The interpolation formulas then follow almost
immediately.

Lemma 2 (Discrete orthogonality for the Lobatto nodes) Define the Lobatto nodes
as

λk = − cos

(

kπ

N

)

, k = 0, 1, . . . , N ;

then for allN > 0 and all0 ≤ j, k ≤ N , we have

N
∑

n=0

′′Tj(λn)Tk(λn) = Kλ,j,kδjk,

where

Kλ,j,k =











N j = k = 0,

N j = k = N,

N/2 1 ≤ j = k ≤ N − 1,
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Proof: This follows from some clever manipulations with the trig identity and the
definition of the Chebyshev polynomials as cosines. (To be finished, later.)

Lemma 3 (Discrete orthogonality for the Chebyshev nodes) Define the Chebyshev
nodes as

γk = − cos

[

(2k + 1)π

2N + 2

]

, k = 0, 1, . . . , N ;

then for allN > 0 and all0 ≤ j, k ≤ N , we have

N
∑

n=0

Tj(γn)Tk(γn) = Kγ,j,kδjk,

where

Kγ,j,k =

{

N + 1 j = k = 0,
1
2 (N + 1) 1 ≤ j = k ≤ N,

Proof: (To appear, later.)

We can easily use the discrete orthogonality relations to derive the formulas (4) and
(6). We’ll do it, informally, for the Lobatto nodes—the same argument works for the
Chebyshev nodes.

The interpolation polynomial is defined by

PN (x) =

N
∑

k=0

′′bkTk(x),

so, in particular,

PN (λn) =

N
∑

k=0

′′bkTk(λn),

and therefore

Tj(λn)PN (λn) =

N
∑

k=0

′′bkTj(λn)Tk(λn).

This is true for alln, so we sum up over0 ≤ n ≤ N to get

N
∑

n=0

Tj(λn)PN (λn) =

N
∑

n=0

N
∑

k=0

′′bkTj(λn)Tk(λn).

Now, the fact thatPN interpolates at the nodes means thatPN (λn) = f(λn); if we
interchange the sums on the right, we get

N
∑

n=0

Tj(λn)f(λn) =

N
∑

k=0

bk

(

N
∑

n=0

′′Tj(λn)Tk(λn)

)

.
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The term in parentheses can be eliminated by the discrete orthogonality relationship to
give us

N
∑

n=0

Tj(λn)f(λn) = Kλ,j,kbk.

So, we finally have

bk =
1

Kλ,j,k

N
∑

n=0

Tj(λn)f(λn),

which is equivalent to (4).
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Note: The author finally bought a new laptop in the Winter of 2014, and discovered that
his ancient-but-still-serviceable version of MATLAB would not install under Windows
7. While there exist various options to work-around this problem by using various
OS emulators (and I intend to pursue those options, eventually), I took this as a good
reason to install and learn SciLab (http://www.scilab.org/), a freeware program
that does much of what MATLAB does. All of the examples in thissection were done
using SciLab. (I do find MATLAB easier to work with, but it is hard to beat SciLab’s
price as an individual.)
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