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Introduction, Algorithms, and Examples

In Chapter 4 we constructed some least squares approximatofunctions, using
orthogonal polynomials as our basis functions, and fourad the accuracy of the
approximations was quite good. In these pages we will logkt is generally known
as “spectral interpolation,” by which we mean interpolatissing special nodes and
polynomials. Our goal is to see if we can obtain a significamprovement in the
accuracy of our approximation without a significant inceesscomputational cost.

We will use the Chebyshev polynomidl% (), introduced in§4.11, as our basic
building blocks, so we will restrict ourselves to the in@ri~1, 1]. We will use two
sets of nodes:

1. The Lobatto nodes:
xkz—cos<k7r>, k=0,1,....N (1)

These are new, and were first introduced by the Dutch matheaaraRehuel Lobatto
(1797-1866) in the early 1850s as part of a quadrature scheme

2. The Chebyshev nodes:

(2k +1)m

=0,1,...,N 2
o I SO @

T = — COS [
These were introduced §#.12.3.
The minus signs are used to force the indexing to be fromdefght on the interval
[—1,1].

Remember that the interpolating polynomial is unique, satw¥e produce here is
the same as we would get from the Lagrang@eX) or Newton §4.2) forms in Chapter

1Rehuel Lobatto (6/6/1797—2/9/1866) was a Dutch mathematibiarn in Amsterdam to a Portuguese
family of Jewish extraction. Athough he never completed amamy doctorate, he published over 60 articles
in various journals between 1823 and his death in 1866. 112 18Her receiving an honorary doctorate from
the University of Gronigen in 1834, he became professor of ematttics at the newly founded Royal Academy
in Delft. His work on quadrature was published as "Lessem dealifferentiaal-en integraalrekening" in the
early 1850s.



4. The advantage of the spectral approach is in the choiceed#s. (The choice of
the Chebyshev polynomials can lead to some computatiomadgs but those issues
will not be addressed.)

Much of what we do here is based on material in [1] and [2].

The algorithms for computing the interpolants can be suriredras follows.
1. Lobatto nodes: The polynomial is defined by

N
Py(x) = "bpTu(x) ©)
n=0
where the coefficients are defined by
2 N
bn = ;O”f(ka(m )

The double-prime notation means that the first and lasteendrfithe sum are multiplied
by .
2. Chebyshev nodes: The polynomial is defined by

N
QN (.13) = Z/CnTn(I) (5)
n=0
where the coefficients are defined by
9 N
p— 1" »
il ;} f(@r)To (k) (6)

The prime notation means that the first entry of the sum isipligtl by % We will
derive these formulas later in this document, based on rabief2].
Let’s begin by looking at some examples.



Example: Considerf(z) = e* over the interval—1,1]. Using the computations
outlined above, we can easily construct spectral intetpslasing either grid. The
errors, as estimated by sampling at 2000 equally-spacedsp@ire given in Table 1
for N = 4, 8, 12, 16; Figure 1 shows the interpolate and function and the ermbspl
for both sets of nodes, fav = 8 (in all these figures, the results for the Lobatto nodes
are on the left, and for the Chebyshev nodes they are on thg.rigote that, in all the
examples, the errors at the nodes (marked with a red '0’)xaetly zero.

Table 1: Errors in spectral interpolation fdz) = e*.
N | Error (Lobatto nodes) Error (Chebyshev nodeg
4 1.0659518054e-03 6.3969948255e-04
8 2.2029401858e-08 1.2190087162e-08
12 | 8.0380146983e-14 4.7073456244e-14
16 | 5.5511151231e-15 2.0428103653e-14

Function and Nodes Function and Nodes
2.5 2.5
2 2
15 1.5
1 1
0.5 4 0.5 o
T T T T T T
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Errors Errors
2e-08
le-08
1e-08 5e-09 -
0e00 — 0e00 -
_1e-084 -5e-09-
—-1e-08-
—2e—-08-
T T T T T T
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 1: Plots of spectral interpolation fgx) = e*.



Example:  Consider nowf(z) = 1z5z;z, Which we referred to as “the Runge ex-
ample” in Chapter 4. Our usual interpolation had a bit of diffiy with this function.
How do the spectral methods fare? Table 2 gives the sameiefoomation as for our
first example. The errors are not as small as above, but theaycis much better than
with Newton interpolation. The figure this timne is faf = 16.

Table 2: Errors in spectral interpolation fdx) = Mﬁ
N | Error (Lobatto nodes) Error (Chebyshev nodes)
4 4.5998051841e-01 4.0201674194e-01
8 2.0468170483e-01 1.7083373973e-01
12 | 8.4395954222e-02 6.9215707808e-02
16 | 3.6712899069e-02 3.2613370682e-02

Function and Nodes Function and Nodes
1 1
0.8 0.8
0.6 o 0.6 o
0.4 0.4
0.2 0.2
0 T T T 04— T T T 1
-1 -0.5 0.5 1 -1 -0.5 0.5 1
Errors Errors
0.04 0.04
0.03 0.03 —
0.02 . 002 4
0.01 1
] 0.01
0 - 4
] 0
-0.014 ]
20.02 70.01—-
—0.03—. -0.02 -
-0.04 +—+———7F—"7+—"—"—" 77— -0.03 +—+—/—"—"7"+—""—"—"T7+———T7
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 2: Plots of spectral interpolation f¢x) = 1=, for N = 16.



. 10x . . . N
Example:  Consider nowf(z) = 1,0, which is often referred to as a “sigmoid”
function, because it is roughly S-shaped. Table 3 givesabuglts of our interpolations,
and Fig. 3 shows the function, interpolate, and the erroiMce 8.

elOm

Table 3: Errors in spectral interpolation f¢z) = % -
N | Error (Lobatto nodes) Error (Chebyshev nodes)
4 2.0418793004e-01 1.7700643107e-01
8 7.7954779351e-02 6.3182166100e-02
12 2.5604089310e-02 2.0190187202e-02
16 7.8768570291e-03 6.1405010074e-03

Function and Nodes Function and Nodes

12 1.2

1 14
0.8 o 0.8 —
0.6 — 0.6 —-
0.4 0.4
0.2 ; 0.2 :

0 0 —-
-0.2 T T T -0.2 T T T

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Errors Errors

0.08 0.08
0.06 ] 0.06 ]
0.04 — 0.04 _-
0.02 ] 0.02 ]

0 0
—0.02—- -0.02 ]
—0.04—- —0.04—-
—0.06—- —0.06—-
—0.08-....,....,....,.... —0.08-....,....,....,....

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

6101

Figure 3: Plots of spectral interpolation f¢x) = 5, for N = 8.



Example:

is the exact solution for the first example§ihl.1 of the text. We get the errors in Table

Consider now the functioffi(z) = 1 — Be® — Be™*, for § = 7. This

4. Fig. 4 shows the solution and errors fgr= 8.

Table 4: Errors in spectral interpolation f¢z) = 1 — Be® — e™%, for 8 = 5%7.
N | Error (Lobatto nodes) Error (Chebyshev nodes)
4 4.5105466649e-05 5.8554408689¢e-05
8 6.6349846450e-10 7.1497261044e-10
12 | 2.1926904736e-15 2.1649348980e-15
16 | 7.7715611724e-16 1.3877787808e-15
Function and Nodes Function and Nodes
0.4 0.4
0.35
0.3 H 0.3
0.25
0.2 4
0.2 4
014 0.15
0.1 4
0 - 0.05 |
T T T L 0 T T LI
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5
Errors Errors
8e-10 8e-10
66—10—. 6e-10 _-
49_10_- 4e—10—-
2e—10- 2e-10 —-
0e00 — 0e00 —-r
—2e—10—- —2e—10—-
-4e-10 ~4e-10
—66—10—- —69—10—-
—8e—10....., ————— —86—10-....,....,....,
-1 -0.5 0.5 1 -1 -0.5 0 0.5

Figure 4: Plots of spectral interpolation fdz) = 1 — Se* — fe~*, for N = 8.




Exponential convergence

In spectral methods one often reads of “exponential coeverg.” What does this
mean? We can illustrate the idea with some more data fromxa@amples.

\\\\
N
\\\
\\\\
Figure 5:log E vs. N for f(z) = Figure 6:log En vs. N for f(z) =
e, andN = 4,8,12, 16. 2=z, andN = 4,8,12,16.
AN
\\
AN
N
N
Figure 7:log En vs. N for f(z) = Figure 8: logExn vs. N for
e, andN = 4,8,12,16. f(@)=1—Be” — Be~", andN =
4,8,12, 16.

If we plot the logarithm of the error versug for, say, the Runge functiofi(z) =
mﬁ’ we getthe plotin Fig. 6. Note that both lines are nearlyightdines, implying
that

log|En| ~ aN +b

for some constants andb, with a < 0 (since the slope is obviously negative). We
therefore have
|Ex| ~ Be,

for B = eb. In other words, the error decays (recalk 0) exponentiallywith N.
(We have not proved this, only demonstrated it by exampleijths rigorously true.)
Is this an artifact of the particular example? No, it is nat,the graphs plus the
material in the previous section indicate. All four exanjpliections show the expected



rapid exponential convergence. (The apparent “flattenivfgthe error for the first
and last examples can be explained, below.) This is why sglentthods for various
differential equation problems deliver such high accuffacysuch a small investment
in computational cost.

Where does this high accuracy come from? Réghll2.3, where the text presented
the Chebyshev nodes (2), and Theorem 4.11 in particularhiohmve proved that the
error in interpolation using the Chebyshev nodes was bailiadeording to

_ L vy
R L ™

here,f is the function being interpolated, agly is the interpolate usingy + 1 nodes.
The exponential convergence comes from 2Nefactor together with the factorial in
the denominator. A similar result holds for the Lobatto mydes we shall now prove.

Theorem 1 Letf € CN*+1([a,b]) and let the nodes;, € [—1, 1] be the Lobatto nodes
(1). Then, for eack: € [-1,1],

N2
_P < - -
I = Pulle < iy

[FaSaedIes (8)
wherePy is the interpolate defined by the valugse;), 0 < k < N.

Proof:  The Polynomial Interpolation Error Theorem (Theorem 4&)ssthat there
is a valueg,, € [—1, 1] such that

wy ()

where
N
wy(x) = H(m—mk).
k=0

Clearly the key is going to be boundingy .

Let's assume thaV is even, saV + 1 is odc?. The “interior” nodes are the points
whereT'y (z) = +1, i.e., the points where the “ monic polynomial’y hits its extrema,
thus7% (z) = 0. Thus

wy (@) = (2% = )Ty ().
But recall Theorem 4.10, part 3, (z) = 2" t2"+ lower-order terms. Therefore
T4 () = N (58=r) 2V ~1+ lower-order terms, off i, (z) = (524 ) T (2). So, with
a little work, we get

wn(@) = M D)

Direct application of calculus to the definition of the Chsbgv polynomials yields

Th(z) = —sin (N cos™* ) {\/fiﬁ} .

2The proof changes in an obvious wayNfis odd.



So, finally,

g
N

2 2
N :1:2|3/2 < N

1_ 22 SQN—1|17 9N-1’

sin(Ncoslz)[ N }

and we have (8) e
We can use Stirling’s Formul&%.5) to rigorously establish that

e N+1
_ < - (N+1)
I - @l < A (5555 ) £l

whereA y is bounded and decays to zero likey/N. This predicts aeryhigh degree
of accuracy (for sufficiently smootfy). Similarly, we can show that

3/2 e S (N+1)

I = Pl < BN (5555 ) 1Y,

whereB)y is positive and bounded d¢ — oco. Again, this yields very high accuracy
for smooth functiond.

The error plots for both the exponential and the ODE solutiegs. 5 and 8) show
what appears to be a decrease in the rate of convergencerréhagpears to “flatten
out” as we go from théV = 12 to the N = 16 case, for both examples. Is something
going wrong here? Well, yes and no. The approximations herea accurate that
we are into “the noise” in the computation—the rounding ersotomparable to the
mathematical error—and we have reached the limits of ouracgulf we could set the
code to compute in higher precision, then we would see theselimes both straighten
out.

The error bounds suggest that the Chebyshev nodes woulgeeato the Lobatto
nodes by a factor of abow{? /2, but the evidence from our examples suggests neither
node set is consistently superior in practice. The Lobatttes, because they involve
the boundary points-1, are generally preferred.

Derivation of I nterpolation Formulas

Note: As of 4/4/2014, this section is still very sketchy. The résare valid, but | have
yet to produce proofs that | am happy with. | will post this e tveb site for the sake
of “getting it up there,” with the idea that the full proofsrctollow, later.

The first thing we need to do is establish a trig identity whilhe first step in
constructing the interpolation formulas.

Lemmal Define

N 1
Sn(0) = kgo cos (k + 2) 0;
then, for allgd and all N > 0,

sin (N +1)6

Sn(9) =
~ () 2sin%9

(9)



Proof: Since the identity depends on an inte@&rwe can use induction. Fé¥ = 0
we have

0 1 .1 1 1 .
So(6) = Zcos bt 1 0 — cos 19 _ cos 5'9511n 50 _ 2 cos 5.651111 50 _ s%n91
= 2 2 sin 59 2sin 59 2sin 59

and the “inductive hypothesis” is confirmed & = 0.
Now we will assume (9) is true faV = n, and use this to prove that it is true for
N = n + 1, which completes the inductive proof. We have:

snﬂ(mzzsgw)+«ns(n%-3>e

2
sin (n + 1)0 3
=— -0
25in 10 +(DS(”+'2)
_sin(n+1)0  2cos (n+ %) Osin 50
2sin 16 2sin 16
But
2sin Acos B = sin (A — B) +sin (A + B),
SO 3 1
2 cos (n + 2) f sin 59 = —sin(n + 1)0 + sin (n + 2)8.
Therefore,
sin (n + 2)0
Spy1(0) = ————
+1(0) 2sin %9

which was to be proved.

The formulas used for the interpolations are based on a pédiscrete orthog-
onality” results, which we now state. The interpolationnfialas then follow almost
immediately.

Lemma 2 (Discrete orthogonality for the L obatto nodes) Define the Lobatto nodes

as i
)\k:—cos(‘]\?fr), k=0,1,...,N;

thenforallN > 0andall0 < j, k < N, we have

N
> T (An)Te(An) = K j b,

where
N  j=k=0,

Kyjk={N j=k=N,
N/2 1<j=k<N-1,

10



Proof:  This follows from some clever manipulations with the trigidity and the
definition of the Chebyshev polynomials as cosines. (To hehfad, later.)

Lemma 3 (Discrete orthogonality for the Chebyshev nodes) Define the Chebyshev

nodes as
(2k+ )7

2N +2
thenforallN > 0and all0 < j, k < N, we have

’yk:—cos[ ], k=0,1,...,N;

N
Z Tj(Vn)Tk:(%) = K, j k0K,

n=0

where

 N+1 j=k=0,
TIETAILN 1) 1<j=k<N

Proof: (To appear, later.)

We can easily use the discrete orthogonality relations tiveléhe formulas (4) and
(6). We'll do it, informally, for the Lobatto nodes—the sanmgament works for the
Chebyshev nodes.

The interpolation polynomial is defined by

N
PN(Q’J) = Z//kak<LL‘),

k=0
S0, in particular,

N

Py(An) =Y "0k Ti(An),

k=0

and therefore N
T;(A) Py (An) = > "0k Tj(An) Tk (An).
k=0

This is true for alln, so we sum up ovelr < n < N to get

N N N
S T )Py (An) = D) 0T () T (An)-

n=0 n=0 k=0

Now, the fact thatPy interpolates at the nodes means tRat(\,,) = f(\,); if we
interchange the sums on the right, we get

N N N
DT OW) FOn) = b (Z"mxnm(xn)) :
n=0 k=0 n=0

11



The term in parentheses can be eliminated by the discrétegmhality relationship to
give us

N
ST W) Fn) = Ko jibr-
n=0
So, we finally have
1 N
b‘ = T} >\n An 3
k K/\,j,k — ]( )f( )

which is equivalent to (4).

12



Note: The author finally bought a new laptop in the Winter of 2014] discovered that
his ancient-but-still-serviceable version of MATLAB walthot install under Windows
7. While there exist various options to work-around this peabby using various
OS emulators (and | intend to pursue those options, evéyfubtook this as a good
reason to install and learn SciLabttp://www.scilab.org/), a freeware program
that does much of what MATLAB does. All of the examples in théstion were done
using SciLab. (I do find MATLAB easier to work with, but it is fthto beat SciLab’s
price as an individual.)
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